Mật độ tới hạn của vũ trụ

Trong bài này chúng ta sẽ làm quen với khái niệm mật độ tới hạn của vũ trụ và một một đại lượng khác thường được gọi đơn giản là \Omega. Giá trị của \Omega là đại lượng quyết định số phận cuối cùng của vũ trụ, nên nó rất quan trọng. Để đọc bài này các bạn chỉ cần có kiến thức vật lý phổ thông.

Khi ta đứng trên mặt đất và tung một hòn đá lên, nó sẽ bay lên nhưng cuối cùng sẽ rơi xuống đất. Đó là do động năng của hòn đá không đủ để thắng thế năng của trọng trường của trái đất.

Bây giờ ta giả sử ta có thể giảm dần khối lượng của trái đất đi mà vẫn giữ kích thước của nó không thay đổi. Để làm như thế ta phải tưởng tượng mật độ của trái đất giảm dần đi. Lúc đó lực hấp dẫn của trái đất sẽ ngày càng yếu, vì lực hấp dẫn tỉ lệ thuận với khối lượng của vật thể. Đến một lúc nào đó hòn đá do ta tung lên sẽ vượt khỏi trọng trường để bay ra ngoài vũ trụ.

Trong vũ trụ học cũng có một hiện tượng như vậy. Qua quan sát ta biết vũ trụ đang giãn nở ra với tốc độ đặc trưng bằng hằng số Hubble (xem ở dưới). Với cùng một tốc độ giãn nở này, nếu vũ trụ có mật độ \rho cao hơn một mật độ \rho_c nào đó thì đến một lúc nào đó nó sẽ không nở ra nữa mà bắt đầu co lại. Ngược lại, nếu \rho<\rho_c nhỏ thì vũ trụ sẽ giãn ra mãi. \rho_c được gọi là tới hạn là mật độ tới hạn.

Trong bài này ta sẽ tính mật độ tới hạn, giả sử hằng số Hubble H là đã biết. Định luật Hubble, xin nhắc lại, là như sau: trong vũ trụ đang giãn nở, hai thiên hà cách nhau khoảng cách bằng a chạy ra xa nhau với vận tốc v tỉ lệ thuận với a. Hằng số tỷ lệ H trong công thức v=Ha được gọi là hằng số Hubble.

Ta tưởng tượng một mô hình vũ trụ rất đơn giản: ta giả sử vũ trụ là một quả cầu có mật độ vật chất là \rho. Mô hình này không hoàn toàn đúng vì vũ trụ không có ranh rới, không có điểm nào có thể coi là tâm hình cầu. Tuy nhiên mô hình đơn giản này sẽ cho ta kết quả đúng.

Ta theo dõi một ngân hà cách tâm quả cầu một khoảng cách bằng a. Gọi khối lượng của ngân hà này là m.

Ta lấy tâm hình cầu làm gốc toạ độ, và xét hệ quy chiếu mà tâm hình cầu đứng yên. Do sự giãn nở của vũ trụ, thiên hà chuyển động ra xa tâm hình cầu. Nếu ta ký hiệu vận tốc chuyển động của thiên hà là v, thì động năng của nó là mv^2/2.

Thế năng của ngân hà bằng -GMm/a, trong đó M là khối lượng vật chất bên trong quả cầu bán kính a: M=4\pi \rho a^3/3.

Như vậy vũ trụ sẽ giãn nở mãi mãi nếu  \displaystyle{\frac{mv^2}2} - G \displaystyle{\frac{4\pi a^3}3} \rho  \frac ma \ge 0

hay  \displaystyle{\frac{v^2}{a^2}} \ge \frac{8\pi G}3 \rho

Nhưng v/a chính là hằng số Hubble H. Bất đẳng thức trên có thể viết thành điều kiện để vũ trụ nở ra mãi mãi

\rho \le \rho_c

trong đó   \rho_c = \displaystyle{\frac{3H^2}{8\pi G}}

chính là mất độ tới hạn. Trong khi đó nếu \rho > \rho_c vũ trụ sẽ co lại.

Tỷ số   \Omega = \displaystyle{\frac{\rho}{\rho_c}}

quyết định số phận của vũ trụ (“Ta là \alpha\Omega…”). Nếu \Omega>1 thì vũ trụ sẽ kết thúc bằng một vụ nổ lớn ngược: mọi thiên hà trong vũ trụ lại vào một điểm, nhiệt độ càng ngày càng cao lên, tiến đến vô cùng. Nếu \Omega\le1 thì tương lai của vũ trụ sáng sủa hơn một chút: các ngân hà càng ngày càng xa nhau ra, vũ trụ ngày càng loãng đi, nhưng không có gì đặc biệt xảy ra.

Để biết tương lai vũ trụ thế nào như vậy ta cần biết \rho\rho_c. Hiện nay ta biết hằng số Hubble khá chính xác:

H = 70 \textrm{km/s/Mpc}

Ở đây Mpc (megaparsec) là đơn vị độ dài dùng trong thiên văn, bằng 3.1 \times 10^{22} m, từ đó ta có thể tìm thấy mật độ tới hạn:

\rho_c \approx 8.5 \times 10^{-27} \textrm{kg/m}^3

Còn để tìm \rho ta phải khoanh ra một thể tích trong vũ trụ và tìm cách “cân” vật chất bên trong thể tích này. Trong một thời gian dài người ta đo được \Omega chỉ độ 0.3, trong đó 0.04 từ vật chất nhình thấy, còn lại từ vật chất không nhìn thấy (“vật chất tối”). Tuy nhiên lý thuyết inflation tiên đoán \Omega=1 với độ chính xác cao. Trong nhiều năm (đầu và giữa những năm 90) nhiều nhà vật lý lý thuyết  vẫn giữ niềm tin sắt son là \Omega=1 mặc dù quan sát có vẻ cho thấy \Omega<1. Cuối cùng, năm 1998 ta biết trong vũ trụ còn một dạng vật chất nữa gọi là “năng lượng tối”, với mật độ bằng khoảng 0.7\rho_c. Cộng thêm mật độ vật chất tối ta có \Omega\approx 1 phù hợp với tiên đoán của lý thuyết inflation.

Những tính toán trong bài này hoàn toàn dựa vào lý thuyết hấp dẫn của Newton, tuy nhiên kết quả chính của bài này (công thức liên hệ \rho_cH) không thay đổi nếu ta dùng thuyết tương đối rộng của Einstein.

A discussion on symmetry in physics in the aftermath of the Cultural Revolution

The text below is from T.D. Lee, Symmetries, Asymmetries, and the Word of Particles, University of Washington Press, Seattle, 1988. (Disclaimer: this post is by no means an endorsement of Mao Zedong or the Cultural Revolution.)

*
*     *

“Tell me, why should symmetry be of importance?” asked Chairman Mao Zedong.

That was on May 30, 1974, when China was still in the turmoil of the Cultural Revolution and the Gang of Four was at the zenith of its power. I was especially depressed to find, in that ancient land of civilization, that education had been almost totally suspended. I hoped desperately that somehow there would be a way to improve, however slightly, the course of events.

At about six o’clock that morning, the phone in my room at the Beijing Hotel had rung unexpectedly. I was told that Mao would like to see me in one hour at his residence in Zhong Nan Hai, inside the former imperial palace. I was even more surprised that when he saw me the first thing he wanted to find out was about symmetry in physics.

According to Webster’s dictionary, symmetry means “balanced proportions” or “the beauty of form arising from such balanced proportions.” In Chinese, symmetry is 对称, which carries an almost identical meaning. Thus it is essentially a static concept. In Mao’s view, the entire evolution of human societies is based on dynamic change. Dynamics, not statics, is the only important element. Mao felt strongly that this also had to be true in nature. He was, therefore, quite puzzled that symmetry should be elevated to such an exalted place in physics.

During our meeting, I was the only guest. A small end table was placed between our chairs, on which there were pads, pencils, and the ever present green tea. I put a pencil on the pad and tipped the pad toward Mao and back toward me. The pencil rolled one way and then the other. I pointed out that at no instant was the motion static, yet as a whole the dynamic process had a symmetry. The concept is by no means static; it is far more general than its common meaning indicates and is applicable to all natural phenomena from the creation of our universe to every microscopic subnuclear reaction. Mao appreciated the simple demonstration. He then asked more questions about the deeper meaning of symmetry, and also about other physics topics. He expressed regret that he had not had the time to study science, but he remembered a set of science books by J. Arthur Thomson which he had enjoyed reading when he was young.

Our conversation gradually shifted from natural phenomena to human activities. In the end, Mao accepted my limited proposal that the education of at least the very brilliant young students should be maintained, continued, and strengthened. This led, with the strong support of Zhou Enlai, to the elite “youth class,” a special intensive education program for talented students form the early teens through college. It was established first at the University of Science and Technology in Anhui and later, because of its success, also at other Chinese universities.

The next day, at the airport, I received a farewell present from the Chairman: a four-volume set of the original 1922 edition of The Outline of Science by J. Arthur Thomson.

To the general chaos produced by the Cultural Revolution, this meeting brought only a minute amount of order. Nevertheless, in a very limit way perhaps it does indicate a correlation between man’s intrinsic urge to search for the symmetry in nature and his desire for a society that is both meaningful and more balanced.

Sóng hấp dẫn

Ngày 11/2/2016 là một ngày lịch sử: thí nghiệm LIGO tuyên bố tìm ra sóng hấp dẫn. Họ thu được tín hiệu của sóng này ngày 14/9/2015, ở 2 trạm thu khác nhau cách nhau vài mili giây. Đây cũng là lần đầu tiên ta tìm được một hệ lỗ đen kép. Theo nguồn dưới đây LIGO cũng đã thu được sóng hấp dẫn từ một vài nguồn nữa.

Các bạn có thể xem video này.

Video của toàn bộ buổi họp báo:

Bài báo giải thích sự kiện này: http://www.newyorker.com/tech/elements/gravitational-waves-exist-heres-how-scientists-finally-found-them?currentPage=all

Nga nghiên cứu thành công siêu vật liệu tàng hình

Một nhóm các nhà nghiên cứu tại Đại học Khoa học và Công nghệ Quốc gia (NUST MISIS) ở Moscow, Nga vừa sáng tạo thành công siêu vật liệu độc đáo có thể giúp các phương tiện quân sự tàng hình, tạp chí khoa học danh tiếng Physical Review cho hay.

Theo Physical Review, siêu vật liệu này không thể tìm thấy trong tự nhiên. Nó có khả năng tác động lên sóng điện từ như ngăn chặn, hấp thụ, tăng cường hoặc bẻ cong khiến nó trở nên vô hình với các loại sóng. Siêu vật liệu này có thể sử dụng rộng rãi trong việc phát triển vũ khí hoặc siêu máy tính mới.

Giám đốc dự án Alexei Basharin cầm trên tay loại vật liệu có khả năng chế tạo phương tiện quân sự tàng hình.
Giám đốc dự án Alexei Basharin cầm trên tay loại vật liệu có khả năng chế tạo phương tiện quân sự tàng hình.

Dự án về vật liệu tàng hình này được một nhóm các nhà khoa học của NUST MISIS phối hợp với trường Đại học Crete, Hy Lạp thực hiện. Năm 2016, Nga và Hy lạp ký một biên bản ghi nhớ về hợp tác nghiên cứu công nghệ lượng tử và chương trình tài chính chung cho nghiên cứu này.

Giám đốc dự án, ông Alexei Basharin cho biết: “Phần thực nghiệm của nghiên cứu là tạo ra siêu vật liệu cấu thành từ một mạng lưới bằng phẳng của cái gọi là siêu phân tử cắt từ khối thép thông thường“.

Ông Basharin nói thêm, nhờ có cấu trúc và hình dạng phân tử khác biệt nên các nhà khoa học đã tạo nên vật liệu có tính chất hoàn toàn độc đáo. Ngoài khả năng tàng hình, siêu vật liệu còn có thể ứng dụng chế tạo thiết bị cảm biến siêu nhạy có thể phát hiện vũ khí hóa học và chất nổ.

Cơ quan báo chí của NUST MISIS cho biết trong một tuyên bố: “Với sự bổ sung của chất bán dẫn phi tuyến, siêu vật liệu có thể điều chỉnh phù hợp với công nghệ tàng hình, giúp các phương tiện quân sự tàng hình với sóng hồng ngoại, sóng vô tuyến và các loại sóng khác. Cơ quan Thông tin Vệ tinh Nga (RSCC) và các tổ chức không gian khác đã thể hiện sự quan tâm đến vật liệu mới này”.

Thuyết tương đối hẹp của Einstein và hệ quả

Các nhà thiên văn học thời xưa cho rằng Trái đất là trung tâm Vũ trụ và đứng yên một chỗ. Như ta đã biết, Trái đất quay chung quanh Mặt trời , nên người trên Trái đất có cảm tưởng là vòm trời quay. Mặt trời cũng quay chung quanh Thiên hà của chúng ta. Sự chuyển động của mọi vật chỉ là một khái niệm tương đối tùy hệ quy chiếu dùng làm cơ sở để khảo sát chuyển động. Từ những định luật của thuyết tương đối của Newton và Galilée ta tính được tốc độ của các vật tùy theo hệ quy chiếu. Thí dụ, một người di chuyển  trên thuyền dọc theo chiều thuyền chạy song song với bờ. Nếu tốc độ của người trên thuyền (đối với thuyền là hệ quy chiếu) là 2 km/giờ và thuyền có tốc độ (đối với bờ sông là hệ quy chiếu) là 10 km/giờ, thì một người đứng trên bờ quan sát thấy người trên thuyền chuyển động với tốc độ 10 + 2 = 12 km/giờ

Thuyết tương đối hẹp của Einstein

Hendrik Lorentz (1853-1928) , Nobel 1902Theo thuyết tương đối đầu thế kỷ thứ 20 của Einstein, một nhà vật lý người Mỹ gốc Đức (1879-1955) thì cách tính cộng tốc độ như trên không đúng, khi các vật thể chuyển động nhanh gần bằng vận tốc ánh sáng (tốc độ tương đối tính). Thí dụ một con tàu vũ trụ chuyển động với tốc độ lớn bằng 75% tốc độ ánh sáng tức là 0,75c (tốc độ ánh sáng là 300.000 km/giây thường được gọi là “c”), tuy tốc độ này không đạt được vì ngoài khả năng kỹ thuât hiện đại. Nếu nhà du hành vũ trụ đi trong tàu với tốc độ 0,25c thì theo lý luạn trên, một người quan sát từ trái đất cho rằng tốc độ của nhà du hành phải là 0,75c + 0,25c = c, tức là lớn bằng vận tốc ánh sáng. Về phương diện vật lý, kết quả này thật phi lý vì không có vật nào chuyển nhanh bằng ánh sáng. Các hạt photon (ánh sáng) không có khối lượng và tốc độ của chúng là giới hạn tuyệt đối cho tốc độ của các vật thể. Trong trường hợp tốc độ lớn  gần bằng tốc độ ánh sáng, ta phải dùng định luật của nhà vật lý người Hà Lan Hendrik Lorentz (1853-1928)  và “thuyết tương đối hẹp” của Einstein để tính tốc độ. Theo định luật này thì tốc đô của nhà du hành là 0,84c , tức là thấp hơn tốc độ ánh sáng. Như vậy, trong trường hợp tốc độ chuyển động cao xấp xỉ tốc độ ánh sáng thì 0,75c + 0,25c không bằng 1c mà chỉ bằng  0,84c .

Những nghịch lý của thuyết tương đối:

Những hiện tượng cơ học trong trường hợp tốc độ chuyển động tương đối tính có nhiều nghịch lý. Điển hình là “nghịch lý anh em sinh đôi”, một người là A và một người là B sinh cùng  một ngày. Anh A là một nhà du hành vũ trụ, lái một con tàu vũ trụ bay tới  thám hiểm sao Alpha Centauri, một trong những ngôi sao gần Trái đất nhất, trong chòm sao “Bán Nhân Mã” khoảng cách là 4 năm ánh sáng. Ánh sáng phát ra từ ngôi sao này với tốc độ 300 000 km/s phải mất 4 năm mới tới chúng ta. Tàu vũ trụ của anh A có tốc độ tuy cực lớn nhưng  không thể bằng vận tốc ánh sáng. Thí dụ tốc độ tàu bằng 75% tốc độ ánh sáng (0,75c = 225000km/s). Với tốc độ này, tàu phải mất 5 năm 4 tháng mới tới đích. Anh A khi tới ngôi sao quay trở về ngay. Đối với anh B đợi ở nhà thì sau 10 năm 8 tháng  mới gặp lại anh A. Nhưng theo đồng hồ anh A mang theo, thì cuộc hành trình khứ hồi của anh với tốc độ tương đối tính chỉ mất 7 năm. Tức là anh B ở lại trên Trái đất già hơn anh A gần 4 tuổi ! Đồng hồ anh A dường như quay chậm hơn đồng hồ anh B, cứ mỗi giờ chậm 20 phút. Nghịch lý “anh em sinh đôi” được giải thích bằng thuyét tương đối thu hẹp của Einstein. Khi tốc độ chuyển vận cao gần bằng tốc độ ánh sáng thì khoảng cách và thời gian hầu như “co” lại. Tốc độ của tàu vũ trụ càng lớn thì trên tàu, đồng hồ càng chạy chậm và thời gian đo bằng đồng hồ càng ngắn đi. Tuy nhiên, trường hợp tàu vũ trụ di chuyển với tốc độ tương tự tốc độ ánh sáng hãy còn trong phạm vi khoa học viễn tưởng. ốc độ trung bình của vệ tinh nhân tạo hiện nay chỉ là 8 km/s, rất thấp so với tốc độ ánh sáng. Sau một năm, đồng hồ trên vệ tinh chỉ chậm 0,01 giây so với đồng hồ trên mặt đất. Nếu tàu vũ trụ của anh A bay với tốc độ 8 km/s, thì phải mất 300 000 năm mới làm xong cuộc hành trình khứ hồi tới sao Alpha Centauri. Lúc trở lại trái đất, anh A chỉ trẻ hơn anh B có 50 phút, sau 300 nghìn năm xa cách. Nhưng trên thực tế, lúc đó hai anh em sinh đôi không còn sống để so sánh tuổi!

Một thí dụ cụ thể của sự thay đổi tương đối của thời gian  là những hạt cơ bản “Muon” (1) của “tia vũ trụ”. Thành phần của tia vũ trụ gồm nhiều hạt cơ bản trong đó có muon, poto (hạt nhân nguyên tử hydrogen) và các hạt nhân khác cùng electron. Những hạt này được tạo ra trong giải Ngân hà bởi những vụ nổ sao mới và sao siêu mới. Khi tia vũ trụ rơi xuống khí quyển Trái đất thì những hạt muon tự nhiên phân rã rất nhanh trong  vài phần triệu giây, nên chúng chỉ tập trung ở những tầng khí quyển ở độ cao khoảng 10 km và không tới mặt đất được. Tuy nhiên trên thực tế  các hạt muon vũ trụ vẫn phát hiện được trong  phòng thí nghiệm. Bởi vì  một số muon có vận tốc lớn, gần bằng tốc độ ánh sáng. Theo thuyết tương đối của Einstein, thời gian sống biểu kiến của những hạt muon đối với người dùng  máy đo trong  phòng thí nghiệm, tăng lên như trong “nghịch lý anh em sinh đôi”. Vì vậy các  hạt này có đủ thì giờ tới được mặt đất trước  khi bị phân rã.

Quỹ đạo các hành tinh được xác định bằng định luật Newton. Định luật này, tuy dùng hơn 200 năm trong  cơ học, nhưng đã được chứng  minh bởi nhà bác học Einstein năm 1905 là không chính xác trong trường hợp vật thể chuyển động  nhanh gần bằng vận tốc ánh sáng. Tuy nhiên sự tăng của khối lượng không đáng kể trong những trường hợp tốc độ thông thường, cho nên định luật Newton vẫn áp dụng được. Khối lượng của một tàu vũ trụ chuyển động trên không trung với tốc độ 8 km/s chỉ tăng 3 phần  10 tỉ (0,0 000 000 003) so với khối lượng lúc  tàu đứng yên tại chỗ (khối lượng nghĩ) trước khi được phóng. Sự gia tăng này rất nhỏ không thể đo được. Chĩ trong  trường hợp tàu vũ trụ bay với tốc độ gần bằng tốc độ ánh sáng thì khối lượng của nó mới được tăng đáng kể. Thí dụ tốc độ tàu bằng 75% tốc độ ánh sáng thì khối lượng tăng lên 1,5 lần so với khối lượng nghỉ. Những electron tương đối tính quan sát thấy trong những  máy gia tốc synchrotron dùng trong  ngành vật lý hạt nhân có tốc độ bằng 99,9999875 phần trăm tốc đô ánh sáng. Lúc đó khối lượng electron tăng  gấp 2000 lần so với khối lượng nghỉ của electron. Sự tăng khối lượng của một vật có thể quy ra thành năng  lượng, theo công thức rất phổ biến E = mc² của thuyết tương đối Einstein (E là năng lượng, m là khối lượng, c là tốc độ ánh sáng)

Trích từ quyển Vũ Trụ phòng thí nghiệm thiên nhiên vĩ đại của nhà thiên văn Nguyễn Quang Riệu (1)

Một hạt cơ bản khác có tên là muon đã được phát hiện vào cuối những năm 30 bởi các nhà vật lý nghiên cứu tia Vũ trụ (đó là những trận mưa hạt tới từ không gian Vũ trụ thường xuyên tới bắn phá Trái Đất). Muon rất giống electron chỉ có điều khối lượng của nó lớn hơn cỡ 200 lần. 

Khối lượng
(GeV/c2)
điện tích
(e)
electron neutrino <7 x 10-9 0
electron 0.000511 -1
muon neutrino <0.0003 0
muon
(mu-minus)
0.106 -1
tau neutrino <0.03 0
tau
(tau-minus)
1.7771 -1

(Trích bài Các hạt sơ cấp)

The Hellmann of the Hellmann-Feynman theorem

The Hellmann-Feynman theorem is well known in quantum mechanics, perhaps even more so in quantum chemistry. Feynman is of course Richard Feynman, who gave a proof of the theorem in his undergraduate thesis. But who is Hellmann?

Hans Hellmann was born in Germany in 1903. He received his PhD in 1929 from University of Stuttgart. He proved the famous theorem in 1933. Shortly after, in 1934 Hellmann escaped from Nazi Germany to the Soviet Union. It was in the USSR where he wrote the first textbook in quantum chemistry, predating Linus Pauling’s book by a few years. He tragically died in 1938 during Stalin’s Great Terror. Below is an excerpt from a biography written by his son Hans Hellmann Jr., which appeared in the new edition of Hellmann’s quantum chemistry textbook Einführung in die Quantenchemie (Springer Spektrum, 2015). Caution: this translation relies heavily on Google Translate. All inaccuracies in translation belong to me.

Portrait of Hans Hellmann by Tatjana Livshits (1999)


… On November 1, 1931, at the age of 28, my father got a job as a lecturer in physics (Physik-Dozent) at the University of Veterinary Medicine Hanover, despite the fact that his Habilitation has not been completed yet. His mentor, Professor Fues, assured that it was imminent. In March and July of 1933, two important papers written by my father appeared in the journal Zeitschrift für Physik. In the first paper, he presented a method by which one can make quantitative statements about the energy of polyatomic molecules on the basis of spectroscopic data of their diatomic fragments. The other work highlights the role of the kinetic energy of the electrons in the covalent bond and contained the virial theorem and the theorem known today as the Hellmann-Feynman theorem. Both works would form the basis of my father’s Habilitation thesis.

But my father was denied the Habilitation. Following the appointment of Adolf Hitler as Chancelor on January 30, 1933, several new laws directed against political opponents, and especially against Jews, were passed. The first set of laws, including the “Law for the Restoration of the Professional Civil Service” of April 7, 1933, took aim at Jewish officials. They could not fulfill their new obligation – to prove their “Aryan origins” – and lost their job. A little later, with the Reich Civil Service Act of June 30, 1933, those in the so-called “mixed marriages” were also affected.

My parents faced hard times. With the Habilitation application, my father must declare the “racial origins” of his wife [who was from a Jewish family in Ukraine], but he refused to submit the requested information. My father was never a member of any political party, but he had political beliefs and never concealed his negative attitude towards National Socialism. In contrast, most students at the University of Veterinary Medicine welcomed the “new order” with enthusiasm. They would greet my father at his lectures with disruptive and hostile noise.

My parents had in their library some books that were banned at the time: Heine, Zweig, Fallada, and magazines with articles by progressive authors. Since keeping them was dangerous, they had to destroy them. My mother told me that once, I reported enthusiastically at my kindergarten: “Yesterday my parents burned a lot of red books!” (they were issues of the [leftist] magazine “Die Weltbühne”). The teacher became scared and brought me home. That was the first, but unfortunately not the last, political lesson in my life.

In the autumn of 1933, the Prussian Culture Ministry prohibited the University of Veterinary Medicine from conferring Habilitation on my father. On December 24, 1933, he was informed that his lecturer position was to be terminated effective March 31, 1934, as his Habilitation was no longer expected due to the “non-Aryan origins” of his wife. His doctoral adviser Erich Regener would be dismissed “only” in 1938.

The continuation of scientific collaboration with colleagues at the Technical University of Hanover became impossible. There, my father had had very intensive discussions with Wilhelm Jost, Privatdozent of Physical Chemistry, on the “problem of the nature of the chemical forces.” They still managed to publish, as two papers in the journal Zeitschrift für Elektrochemie (1934/1935), the clear understanding based on quantum mechanics that they worked out, but the second paper had Wilhelm Jost listed as the sole author. Later, these two papers would form the basis of the first chapter of my father’s two textbooks of quantum chemistry.

Like many scientists, particularly those from Göttingen, a center of the development of quantum mechanics, my father had to emigrate with his family. But to where? A fateful decision was made in favor of the Soviet Union. Why? There were probably two deciding factors. First, my father had a certain sympathy for socialist ideas. Second, my mother came from there (she did not lose her citizenship) and still had relatives there. Later I learned from her that my father also had other invitations, including some from America. From about 1930, he had been looking for a job in the Soviet Union. Perhaps he talked about it with his sister back then.

Hans Hellmann and his sister Greta (c. 1930)

Through the mediation of Victor Weisskopf, still in Göttingen at the time, he got two invitations. The first was from the Ukrainian Physico-Technical Institute in Kharkov (now Kharkiv), where several well-known physicists (among others Alexander Weissberg and Lev Shubnikov, a few years later also Lev Landau) were working at that time. The second invitation was from the Physics Institute of the University of Dnepropetrovsk, where Boris Finkelstein was very interested in problems of quantum chemistry. But in both occasions the Soviet authorities refused to issue the necessary entry documents. Then came 1932 when, again with the help of colleagues in Göttingen, he made contact with the Karpov Institute in Moscow, then a leading center of physico-chemical research in the Soviet Union. After a meeting in Berlin with academician Alexander Frumkin, Deputy Director of the Karpov Institute, my father received an official invitation to Moscow and an attractive job offer. In March 1934 we got the necessary entry and exit documents. We bid farewell to our dear relatives and left Germany. Traveling by train from Berlin, we arrived in Moscow on April 31, 1934. My mother’s aunt Maria Minchina picked us up at Belorussian-Baltic Station. Her first words were: “How did you decide to come here? You are crazy!” [“Сумасшедшие, куда вы приехали?”, according to a Russian source].

*
*     *

The Karpov Institute in Moscow was at that time very well financed by the government. The research carried out there were important both for the economy and the military. The directors of the Institute were two academicians, Alexei Bach, a biochemist, and Alexander Frumkin, a physicist. In the “Department of the Structure of Matter” under the leadership of Yakov Syrkin, my father was hired as the “Head of the Theory Group.” He was well received at the Institute and, which was particularly important for him, could now fully devote his knowledge and work to science. At that time, foreign scientists in the Soviet Union had some privileges. Of course, complete loyalty was demanded in return. My father had the freedom to plan his working hours, and he was also able to work at home a lot. In his letters to his mother, who was then living in Hamburg, he described the atmosphere at the Institute and the local working conditions in enthusiastically positive terms. Not a single word about the small two-room apartment or the lack of certain foods. He talked about his work and his contacts with foreign colleagues, for example, at an international conference in Kharkov in 1934.

This photo from the AIP archive was mislabeled. The person to the left of Niels Bohr, under the red arrow, is Hans Hellmann, and to the left of him, Yuri Rumer.

After numerous insults and humiliations in Hanover during the first year of the Nazi regime, he was very happy with his new life in Moscow, and the whole family was also mostly happy. In the summer of 1935 my grandmother came to the Soviet Union to visit us in the for the first and only time. She spent a short vacation in the Crimea with her son during this visit.

Early in 1935, the doctorate, the Russian equivalent of Habilitation, was conferred on my father. Approximately every two months he would publish a scientific paper. At a meeting in Dnepropetrovsk he was elected to the organizing committee of a quantum chemistry conference held in 1936. He was honored several times with monetary awards for his research and results. In June 1936 my father became a Soviet citizen, in November his starting salary of 700 rubles was increased to 1200 rubles, and in December he was invited to give a lecture at the Academy of Sciences. Shortly afterwards, on January 1, 1937, he was appointed a “Full Member of the Karpov Institute” (which corresponds to the title of a professor at a university), and in autumn 1937 became a “Senior Scientist.” In this period of about three and a half years in Moscow, my father had advised and mentored a number of young PhD students and postdocs: V. Kasatochkin, K. Maevsky, M. Mamotenko, S. Pshezhetsky, N. Sokolov, and M. Kovner.

At least since 1933 my father had been planning to write a monograph on his field of quantum chemistry. The above-mentioned join work with Wilhelm Jost in Hanover would form part of this monograph. The first version of the manuscript was finished before emigration, but remained with Jost, who tried in vain to find a publisher in Germany. Based on the manuscript, by now translated into Russian, my father in 1935-1936 gave a lecture course at the Karpov Institute, attended also by young researchers from other institutes in Moscow. Since my father’s Russian was not perfect, his PhD students sometimes had to help him find appropriate terms for notions that were new also in German. The eager Russian listeners offered their criticism and proposed corrections, for which my father expressed gratitude in the preface of “Quantum Chemistry” (Квантовая Химия, Volume 1 in the series “Physics in Monographs” ONTI, Moscow and Leningrad, 546 pages), which appeared in early 1937. More specifically, it includes an acknowledgment to his friend and colleague Yuri Rumer.

Even before completing the Russian version, my father had started revising and tightening the German version. It carried the title “Einführung in die Quantenchemie” (Deuticke, Leipzig and Vienna, 350 pages) and appeared in late 1937. While the Russian version was written for a largely unprepared reader, the shorter German version, with about the same content, placed significantly higher requirements on the reader’s preparation. But while the Russian book was selling well and was soon out of print, the German book had far fewer buyers. The reasons are possibly the contemporary historical circumstances on the one hand and the events which occurred after the publication of the books on the other hand.

*
*     *

In 1937, mass arrests of the “enemies of the people” began in the Soviet Union. Among those arrested were German and Russians, writers and farmers, engineers and artists, officers and soldiers. No one could sleep peacefully any more. The total number of innocent victims in those years amounts to over twenty million. In a letter to his mother from December 1937, my father wrote that “the current international situation has become complicated” and that he did not want to write her more often. In the night from the 9th to the 10th of March 1938, my father was arrested. I was eight and a half years old and I can still remember this event. They woke me up and searched my bed for anti-Soviet writings and evidence of espionage activities.

My father’s doctoral student M. Kovner, who often visited our house, came to Moscow from Voronezh a few days later. He wanted to visit us, but a neighbor warned him against it and told him about my father’s arrest. As the result he had to leave immediately. Later, M. Kovner published two articles about his dear teacher.

After my father’s arrest, my mother tried several times to get information on his fate from the People’s Commissariat for Internal Affairs (NKVD), the predecessor of the KGB, all in vain. She was forced, by the threats from local officials, to end her inquiries. We had to leave Moscow. My mother found a job as a German language teacher at a middle school in a village 120 km west of Moscow (near Volokolamsk). We knew nothing about my father’s fate. Former friends disappeared likewise or avoided us. Only a few people maintained friendly contact with us: the Livshits family (my mother’s relatives) and the translator Nadezhda Volpina.

Several months after the start of the Russian campaign of the German Wehrmacht, on September 9, 1941, when German troops were already on the march to Moscow, my mother was arrested. We found each other again until after the war. She was accused of “anti-Soviet propaganda,” and it was claimed that she, a Jew who had fled Nazi Germany, had been waiting for the German troops to work for them as a translator. After several months in Moscow prison, she was exiled to the Semipalatinsk area in Kazakhstan.

Only after Stalin’s death, and the beginning of the politics of “the Thaw,” my mother was “fully rehabilitated.” She then requested information about her husband. Initially she received a certificate, which later turned out to be wrong, that he died in prison from a disease (peritonitis). Then my mother applied for a certificate of rehabilitation for my father, which she received in 1957. Now my father was “fully rehabilitated.” Sadly, this happened only after his death. Only in 1989, during the “perestroika,” did we get the real death certificate. The documents showed that my father was convicted to “high treason” and “espionage in favor of Germany” in accordance with Article 58 of the Criminal Code and was shot dead on May 29, 1938.

Already in May 1937, shortly after the beginning of mass arrests, Albert Einstein sent a letter to Stalin expressing his great concern for the fate of many well-known scientists. A similar letter from three Nobel laureates Irène Joliot-Curie, Frédéric Joliot-Curie, and Jean Baptiste Perrin was sent to Stalin in June 1937. But their voices were not heard. When Wilhelm Jost noticed in 1938 that the name “Hellmann” no longer appeared among the authors in the journal Acta Physicochimica URSS where my father worked and regularly published until October 1937, he asked his British colleague John Lennard-Jones for help. Lennard-Jones sent a request for reprints to my father’s address at the Karpov Institute, but there was no reply.

Due to the historical and political circumstances and the tragic fate caused by them, for decades my father’s name disappeared almost completely from science. Although his book “Einführung in die Quantenchemie” appeared in the US in 1944 as a war booty, it hardly found the wide dissemination which it deserves. The name “Hellmann” is now remembered mostly through the term “the Hellmann-Feynman theorem”…